NWave Joins Weightless SIG

The Weightless SIG, which develops Internet of Things standards for long distance, low cost machine to machine connections, has announced a new parter with NWave technologies joining the group as a technology vendor. Weightless has already picked up some serious backers, including ARM, CSR, and Cable & Wireless.

While many short range M2N solutions are available, such as Wi-Fi, Bluetooth, ZigBee, Z-Wave and others, they cannot provide long-range coverage.

The IEEE standards group has developed a couple of White Space standards that promise better range. Those include the 802.11af standard, based on Wi-Fi like protocols, for ranges up to 5 km. Additionally, the 802.22 standard, based on WiMax chipsets which incorporate polling, are designed for wireless regional area networks with ranges up to 100 km. But both of those standards appear to be targeting broadband connections.

The Weightless standards, by contrast, delivers a slower, narrow-band solution that connects to more devices and requires very little power. It may even be used on licensed cellular frequencies.

The Weightless standard aims to connect sensors that require long range connections and is targeting applications like vehicles and asset tracking, healthcare and metering.

While improved coverage can be supplied by cellular technology using GPRS, 3G and LTE, cellular costs are high, using more power and bandwidth than desirable. The Weightless SIG uses television white spaces and the lower unlicensed ISM band (800-900 MHz) for improved range using a slower but error-resistant data scheme.

Weightless uses a spreading algorithm to create a longer data sequence when the signal levels are weak. It reduces the data rate and shifts to a simpler modulation scheme to reduce the error rate or increase range. It enables coverage up to 5km (3 miles) to indoor terminals.

The Weightless SIG announced the development of the Weightless-W standard, which uses TV white spaces, last year. This year the the Weightless-N standard, using the unlicensed 800/900 MHz ISM band was announced. It uses Ultra Narrow Band (UNB) technology and operates in ISM band – 868MHz in Europe and 915MHz in the US, and may also use cellular frequencies around 800 MHz.

Professor William Webb, CEO of the Weightless SIG said, “We are delighted to welcome NWave Technologies Limited to the Weightless SIG. NWave is a leader in IoT over ISM spectrum and the company’s deep technical experience in LPWAN connectivity will make a significant contribution to the rapid development of Weightless-N. Bringing proven capability from an existing technology provider to the SIG and merging it with the expertise already established within the group will accelerate the development of Weightless-N as the leading global open standard for machine connectivity over licence exempt spectrum.”

See Dailywireless Whitespace articles, including; Qualcomm Buys Silicon Radio, Huawei Buys Neul, Weightless M2M Standard, Version 0.9, Neul’s Weightless Chip: $12

Qualcomm Announces end-to-end MU-MIMO

Qualcomm today announced 802.11ac Wave 2 solutions with multi-user multi-input/multi-output (MU-MIMO). Qualcomm Atheros will be conducting the industry’s an over-the-air, end-to-end MU-MIMO demonstration using their networking and client-side chips at Broadband World Forum in Amsterdam, October 21-23.

Qualcomm VIVE 802.11ac chipsets with MU-MIMO technology, which Qualcomm Atheros introduced earlier this year are beginning to be released in products. Mobile device manufacturers are also preparing smartphones and tablets to take advantage of these MU-MIMO which can achieve up to three times faster 11ac Wi-Fi, according to Qualcomm.

The Qualcomm Atheros QCA9377 chip extends the performance benefits of MU | EFX to notebooks, TVs, cameras, and other consumer electronics, while Qualcomm’s single-stream 11ac + Bluetooth 4.1 combination chip is designed to provide the best possible performance with reduced power consumption.

Qualcomm says its VIVE is currently the only line of 802.11ac Multi-User MIMO solutions for networking equipment, consumer electronics, and mobile and computing devices. The VIVE Wi-Fi radio is an integral part built into the new Snapdragon 810 and 808 platforms.

Multi-user MIMO allows multiple transmitters to send separate signals to multiple receivers simultaneously in the same band.

Three Quantenna-based 802.11ac products are now available on the market, says Tim Higgins of Small Net Builder. They include the ASUS’ Broadcom / Quantenna based RT-AC87U/R, the NETGEAR’s R7500, and the Linksys E8350, but they currently do not support MU-MIMO. Broadcom’s new 5G Xtream adds another radio to the existing platform, but does not support MU-MIMO.

Qualcomm says AVM will introduce a new FRITZ! Box router based on the Qualcomm IPQ and 4-stream 802.11ac with MU-MIMO products, targeting both retail and carrier segments. Qualcomm Atheros has enabled mobile customers using its 802.11ac products (QCA6174A and WCN3680B) to include Qualcomm MU | EFX in forthcoming smartphones and tablets.

Mimosa Networks: Outdoor Multi-User MIMO

Mimosa Networks, a pioneer in gigabit wireless technology, has announced a new suite of outdoor 802.11ac 4×4 access points and client devices, to create “the world’s highest capacity low-cost outdoor solution and the first with MU-MIMO”. It’s targeting Wireless ISPs and enterprises, but their products won’t be available until Summer/Fall 2015.

Currently most 802.11ac access points use Single User MIMO where every transmission is sent to a single destination only. Other users have to wait their turn. Multi-User MIMO lets multiple clients use a single channel. MU-MIMO applies an extended version of space-division multiple access (SDMA) to allow multiple transmitters to send separate signals and multiple receivers to receive separate signals simultaneously in the same band.

With advanced RF isolation and satellite timing services (GPS and GLONASS), Mimosa collocates multiple radios using the same channel on a single tower while the entire network synchronizes to avoid self-interference.

Additionally, rather than relying on a traditional controller, the access platform takes advantage of Mimosa Cloud Services to seamlessly manage subscriber capacities and network-wide spectrum and interference mitigation.

“The next great advancement in the wireless industry will come from progress in spectrum re-use technology. To that extent, MU-MIMO is a powerful technology that enables simultaneous downlink transmission to multiple clients, fixed or mobile, drastically increasing network speed and capacity as well as spectrum efficiency,” said Jaime Fink, CPO of Mimosa. “Our products deliver immense capacity in an incredibly low power and lightweight package. This, coupled with MU-MIMO and innovative collocation techniques, allows our products to thrive in any environment or deployment scenario and in areas with extreme spectrum congestion.”

The A5 access points are available in 3 different options: A5-90 (90º Sector), High Gain A5-360 (360º Omni with 18 dBi gain) and Low Gain A5-360 (360º Omni with 14 dBi gain). The C5 Client device is small dish, available in 20 dBi gain. The B5c Backhaul leverages 802.11ac, 4×4:4 MIMO and is said to be capable of 1 Gbps throughput.

All four of the products will debut in wireless ISP networks in Summer/Fall 2015 and are currently available for pre-order on the Mimosa website. List Prices are: $1099 for A5-90, $999 for A5 360 18 dBi, $949 for A5 360 14 dBi, $99 for C5.

Mimosa Networks says the new FCC 5 GHz Rules Will Limit Broadband Delivery. New rules prohibit the use of the entire band for transmission, and instead require radios to avoid the edges of the band, severely limiting the amount of spectrum available for use (the FCC is trying to avoid interference with the 5.9 GHz band planned for transporation infrastructure and automobiles).

In addition, concerns about interference of Terminal Doppler Weather Radar (at 5600-5650 MHz) prompted the FCC to disallow the TDWR band. Attempting to balance the needs of all constituencies (pdf), the new FCC regulation adds 100 MHz of new outdoor spectrum (5150-5250 MHz), allowing 53 dBm EIRP for point-to-point links. At the same time, however, it disqualifies Part 15.247 and imposes the stringent emissions requirement of 15.407 ostensibly in order to avoid interference with radar.

Mimosa – along with WISPA and a number of other wireless equipment vendors – believes that the FCC’s current limits will hurt the usefulness of high gain point-to-point antennas. Mimosa wants FCC to open 10.0-10.5 GHz band for backhaul.

Multi-User MIMO promises to handle large crowds better then Wave 1 802.11ac products since the different users can use different streams at the same time. Public Hotspots serving large crowds will benefit with MU-MIMO but enterprise and carrier-grade gear could be a year away, say industry observers.

The FCC has increased Wi-Fi power in the lower 5 GHz band at 5.15-5.25 GHz, making Comcast and mobile phone operators happy since they can make use of 802.11ac networks, both indoors and out, even utilizing all four channels for up to 1 Gbps wireless networking.

The FCC’s 5 GHz U-NII Report & Order allowed higher power in the 5.150 – 5.250 GHz band.

These FCC U-NII technical modifications are separate from another proposal currently under study by the FCC and NTIA that would add another 195 MHz of spectrum under U-NII rules in two new bands, U-NII 2B (5.350 – 5.470 GHz) and U-NII 4 (5.850 – 5.925 GHz).

Commercial entities, including cable operators, cellular operators, and independent companies seem destined to blanket every dense urban area in the country with high-power 5 GHz service – “free” if you’re already a subscriber on their subscription network
.

WifiForward released a new economic study (pdf) that finds unlicensed spectrum generated $222 billion in value to the U.S. economy in 2013 and contributed $6.7 billion to U.S. GDP. The new study provides three general conclusions about the impact of unlicensed spectrum, detailing the ways in which it makes wireline broadband and cellular networks more effective, serves as a platform for innovative services and new technologies, and expands consumer choice.

Additional Dailywireless spectrum news include; Comcast Buys Cloud Control WiFi Company, Gowex Declares Bankruptcy, Ruckus Announces Cloud-Based WiFi Services, Cloud4Wi: Cloud-Managed, Geo-enabled Hotspots, Ad-Sponsored WiFi Initiatives from Gowex & Facebook,
FCC Moves to Add 195 MHz to Unlicensed 5 GHz band, Samsung: Here Comes 60 GHz, 802.11ad, Cellular on Unlicensed Bands, FCC Opens 3.5 GHz for Shared Access, FCC Commissioner: Higher Power in Lower 5 GHz, FCC Authorizes High Power at 5.15 – 5.25 GHz

Samsung: Here Comes 60 GHz, 802.11ad

Samsung Electronics today announced a 60GHz (802.11ad) Wi-Fi technology that enables data transmission speeds of up to 4.6Gbps, a five-fold increase from 866Mbps, using the 5 GHz band. The 60 GHz Wi-Fi technology will enable a 1 gigabyte movie to be transferred between devices in less than three seconds while allowing uncompressed high-definition videos to be streamed from mobile devices. Samsung likely to include WiGig as a differentiator in its Galaxy and
Note smartphones by the end of 2015, say industry observers.

Samsung says its 802.11ad technology eliminates co-channel interference, no matter how many devices are accessing network. Samsung also enhanced the overall signal quality by developing what they say is the world’s first micro beam-forming control technology that optimizes the communications module in 1/3,000 second increments.

The Wireless Gigabit Alliance (WiGig) was a trade association that developed and promoted the adoption of multi-gigabit speed wireless standards over the unlicensed 60 GHz frequency band. The alliance was subsumed by the Wi-Fi Alliance in March 2013.

Samsung notes there are challenges in commercializing 60 GHz Wi-Fi because millimeter waves that travel by line-of-sight and have weak propagation characteristics that will be easily blocked by walls.

Chipsets supporting 60GHz 802.11ad are coming from a variety of sources including Qualcomm, Marvel and Broadcom as well as small, fabless semiconductor firms like Nitero. Qualcom’s Snapdragon 810, due next year, includes WiGig. Qualcomm acquired Wilocity in July 2014, and Nitero has announced its mobile WiGig solution.

Samsung said it plans to put its 802.11ad technology in a variety of devices, including audio visual and medical devices, as well as telecommunications equipment.

Eventually, the Wi-Fi Alliance expects chipsets to support all three bands, enabling both compatibility and new uses.

Samsung isn’t the first to promote 60 GHz for consumers. Dell introduced the Latitude 6430u laptop at the 2013 CES which included both 2.4 and 5 GHz connections, as well as a new 60 GHz connections.

Here’s a review of evolving WiFi standards:

  • IEEE 802.11n: Increased the maximum raw data rate from 54 Mbit/s to 600 Mbit/s by using as many as four spatial streams with a double width channel (40 MHz). MIMO architecture and wider channels improved speeds on 5 GHz and 2.4 GHz channels.
  • IEEE 802.11ac: Provides high throughput in the 5 GHz band. It uses 80 MHz and 160 MHz channel bandwidths (vs. 40 MHz maximum in 802.11n) and supports up to 8 spatial streams (vs. 4 in 802.11n)
  • IEEE 802.11ad: Now with the WiGig specs folded in, provides high throughput in the 5 GHz band and 60 GHz bands. The 60 GHz band is stopped by walls, so range will be shorter, but the spectrum is wider, supporting nearly 7 Gbps throughput.

The unlicensed 60 GHz band varies slightly around the world. The standard divides the unlicensed 60 GHz band into four 2.16 GHz wide channels. Data rates of up to 7 Gbits/s are possible using OFDM with different modulation schemes. A single-channel version for low-power operation is available and can deliver a speed up to 4.6 Gbits/s.

ABI Research estimates over 1.5 billion chipsets with 802.11ad will ship in 2018. Smartphones will account for nearly half of all 802.11ad-enabled products in 2018, though with less than half the volume in smartphones compared to 802.11ac, says the research firm.

The IEEE 802.11ac and 802.11ad standards may also use Multi-user MIMO (MU-MIMO), where simultaneous streams are transmitted to different users on the same channels.

Related Dailywireless articles include; WiGig: 60 GHz WiFi Rolls Out, WiGig to Demo 4K Wireless at Intel Forum, WiGig Folded Into Wi-Fi at 60 GHz, Marvel 802.11ac: Now with 4×4 Beamforming, Fast Transistion to 802.11ac Predicts ABI, Broadcom 802.11ac for Phones, Quantenna: 802.11ac Chipset,

Hotspot 2.0 Streamlines New User Accounts

The Wi-Fi Alliance has expanded its Passpoint program, which provides seamless connection and WPA2 security, to include a streamlined method to establish new user accounts and connect Wi-Fi-only devices.

The WiFi Alliance is a non-profit trade organization formed to provide interoperability between device and promote the benefits of WiFi. The new features in Passpoint are particularly valuable to mobile and fixed operators, and open opportunities for other sectors, says the organization.

“Wi-Fi-first” business models have provided a disruptive counterpoint to traditional operator services, and retailers are deploying Wi-Fi as a way to improve customer engagement, says The Alliance. Wi-Fi roaming agreements among service providers are emerging as an important complement to traditional cellular roaming.

“Enthusiasm for Passpoint from both mobile and fixed operators continues to mount, and the strategic value of Passpoint extends into new segments as well,” said Edgar Figueroa, CEO of Wi-Fi Alliance. “What makes the new features exciting is that they empower businesses to realize the powerful commercial impact that Wi-Fi can offer by giving them the ability to engage with customers on a new platform in a secure and streamlined fashion.”

Passpoint was launched in 2012 and is based on Wi-Fi Alliance’s Hotspot 2.0 Technical Specification. Fixed and mobile operators, including Boingo, Orange, SK Telecom, and Time Warner Cable. More than 20 operators are now participating in Wi-Fi roaming trials based on Passpoint.

The Passpoint program expansion builds on its foundational authentication and security mechanisms, adding features that make Passpoint more versatile and scalable:

  • Online sign-up and immediate account provisioning: Passpoint now enables a streamlined process to establish a new user account at the point of access.
  • Secure registration: The process of establishing a new account or connecting a second device takes place securely.
  • Operator policy: Passpoint now includes the capability for service providers to distribute their specific subscriber policies, such as which networks to join and in what order of preference.

The Passpoint certification program test suite includes support from Aruba Networks, Broadcom, Cisco, Ericsson, Intel, Marvell, MediaTek, Qualcomm Atheros, and Ruckus Wireless.

LTE Direct Gets Real

LTE Direct, a new feature being added to the LTE protocol, will make it possible to bypass cell towers, notes Technology Review. Phones using LTE Direct (Qualcomm whitepaper), will be able to “talk” directly to other mobile devices as well as connect to beacons located in shops and other businesses.

The wireless technology standard is baked into the latest LTE spec, which is slated for approval this year. It could appear in phones as soon as late 2015. Devices capable of LTE Direct can interconnect up to 500 meters — far more than either Wi-Fi or Bluetooth. But issues like authorisation and authentication, currently handled by the network, would need to be extended to accommodate device to device to communication without the presence of the network.

At the LTE World Summit, Thomas Henze from Deutsche Telekom AG presented some use cases of proximity services via LTE device broadcast.

Since radio to radio communications is vital for police and fire, it has been incorporated into release 12 of the LTE-A spec, due in 2015.

At Qualcomm’s Uplinq conference in San Francisco this month, the company announced that it’s helping partners including Facebook and Yahoo experiment with the technology.

Facebook is also interested in LTE Multicast which is a Broadcast TV technology. Enhanced Multimedia Broadcast Multicast Services (also called E-MBMS or LTE Broadcast), uses cellular frequencies to multicast data or video to multiple users, simultaneously. This enables mobile operators to offer mobile TV without the need for additional spectrum or TV antenna and tuner.