NYC: Free Phone and WiFi at 10,000 Payphones

New York City Mayor Bill de Blasio’s administration announced this week that CityBridge will develop and operate up to 10,000 802.11ac access points for New York City’s LinkNYC. It promises to be the largest free municipal Wi-Fi deployment in the world.

Public pay telephones will be replaced with WiFi hotspots where residents can make free phone calls in the U.S. and get free 24/7 Internet access. Advertisng will pay for it. The plan is to make ads relevant and contextually-driven in the dense population of Manhattan.

A particular kiosk could change the ad it’s displaying based on what time of day it is, what events are happening nearby, or even potentially what sorts of people are walking by it, at least in a broad demographic sense. In order to ensure equity among all five boroughs and live up to the promise of bringing wireless access to all New York neighborhoods, these units will need to branch into areas currently not highly sought after by advertisers.

The payphone RFP began in 2012 when DoITT issued a Request for Information (RFI) about the future of the payphone.

CityBridge is the consortium of companies that will build the project and includes Qualcomm, Titan, Comark and Control Group. CityBridge’s extended team includes Transit Wireless, Antenna Design as well as a (rumored) Ruckus Wireless,. Transit Wireless would be primarily responsible for the fiber infrastructure and is providing the wireless and Wi-Fi technology for 279 underground subway stations in NYC.

A spokeswoman told FierceWirelesTech that CityBridge was unable to comment on Ruckus’ role in the project. The city’s Department of Information, Technology and Telecommunications spokesman could not immediately confirm Ruckus’ participation. A spokesman for Ruckus Wireless would not comment.

Ruckus offers dual-band 802.11ac outdoor access points (AP) designed explicitly for high density public venues. Its Smart Wi-Fi equipment is Passpoint certified by the Wi-Fi Alliance, is being used to power the Hotspot 2.0 service across both San Jose and San Francisco Wi-Fi networks.

“LinkNYC is an initiative that could only be made in New York – it harnesses the latest technologies and it is a true partnership of the world’s leaders in technology, telecommunications, advertising and design,” said Minerva Tantoco, Chief Technology Officer for the City of New York.

Of course lots of cities, including San Jose and others have tried free WiFi. Now, however, technology may have caught up with the vision. Utilizing Hotspot 2.0 (Passport) could allow multiple carriers and Wireless ISPs to use the service for seamless roaming, while smartphones and tablets have provided an insatiable hunger for more bandwidth. Beamforming and Multi-User MIMO will increase range and capacity. Bluetooth and WiFi tracking allow targeted advertising.

But NYC’s “free WiFi” plan could be politically naive. Ad beacons, “supercookies”, and big data could delay or possibly kill any proposal in the current climate of distrust.

Related articles on Dailywireless include; Reinvent Pay Phones, Ruckus Unwires San Jose Airport and Convention Center, Google Fiber Going Wireless?, Chicago Announces Free WiFi in Parks, Google Fiber Launches in Kansas City, Qualcomm Annouces Proximity Beacons, Apple’s iBeacon: Location via Bluetooth 4.0, Small Cells for Cisco, Sprint to use Light Radio for Small Cells, Street light Provides Wi-Fi, Cell Coverage, Hotspot 2.0, Intel: Basestation in the Cloud,New Outdoor & Indoor 11ac Access Points from Ruckus, Ruckus Announces 802.11ac Access Points, What’s inside Google’s Fiber Huts?, Google Fiber Expands to More Cities, Google Fiber Launches in Kansas City , FCC Authorizes High Power at 5.15 – 5.25 GHz, Ad-Sponsored WiFi Initiatives from Gowex & Facebook, Comcast Creates Hotspot 2.0 National Network, FCC Moves to Add 195 MHz to Unlicensed 5 GHz band,

WorldVu Proposes Global LEO Broadband

According to the Wall Street Journal, Elon Musk is working with WorldVu Satellites which proposes to deliver Internet access across the globe. A network of 700 satellites in Low Earth Orbit would use the Ku band (12/14 GHz) to deliver broadband to end users. Industry officials estimate that it would cost $1 billion or more to develop the project.

Musk is working with Greg Wyler, a former Google executive and satellite-industry veteran. Wyler founded WorldVu Satellites which controls a large block of radio spectrum in the Ku band.

WorldVu hopes to bring the cost of manufacturing the satellites to under $1 million, with each satellite weighing about 250 pounds. The current WorldVu design has been granted radio spectrum rights by international regulators, to beam some 2 gigahertz of Ku-band (12/14 GHz) using nongeostationary satellites at between 800 and 950 kilometers in altitude.

The WorldVu satellite constellation would be 10 times the size of the current Iridium fleet. It is expected to require up to US$3 billion in capital by the time the full constellation becomes operational in 2019–2020. SpaceX, which has launched a dozen of its Falcon 9 rockets in the past five years, would likely launch the satellites.

O3b Networks, a previous satellite Internet startup founded by Mr. Wyler, has faced technical problems with the first four satellites it launched, which likely will shorten their lifespans. Today, satellites in the O3b constellation each weigh about 700 kg (1543 lbs), and were designed, tested and integrated by Thales Alenia Space. O3b serves large areas on either side of the equator with a constellation of eight satellites and is planning to launch four more by the end of the year. O3b is using Ka-band frequencies that were abandoned by the now-defunct Teledesic venture

Teledesic was the most ambitious of the early LEO broadband constellation proposals. Originally in 1994, 840 active satellites were planned, then 288 active satellites in 1997 after a Boeing-led redesign and before the merge with Motorola’s Celestri. Later it was reduced to a proposed 12 satelites in a Medium Orbit (as Craig McCaw’s ICO). Teledesic planned 21 near-polar orbital planes of 40 active satellites with 4 in-orbit spares per plane at an altitude of 700km. Each Teledesic satellite was originally planned to have eight intersatellite links, in the 60GHz band. Ka-band frequencies were allocated to Teledesic at the 1995 World Radio Conference.

Alcatel announced its SkyBridge constellation in February 1997. Unlike Teledsic, SkyBridge did not propose to use intersatellite links. Instead, its satellites were planned to act as in-orbit ‘bent-pipe’ transponders, in the Ku-band.

The WorldVu concept is similar to the defunct SkyBridge satellite constellation, and is an attempt to use the same spectrum. Before it disappeared, SkyBridge battled with existing satellite fleet operators about whether dozens of SkyBridge satellites in low orbit would interfere with the standard telecommunications satellite fleets in geostationary orbit 36,000 kilometers over the equator, notes SpaceNews.

Perhaps active beamforming antennas like Kymet’s flat antenna and improved frequency inteference rejection will bring LEO broadband satellites back from the dead. With WorldVu, Google may be adding another player in satellite space in addition to their SkyBox Imaging platform.

Third world and global broadband connectivity is being explored with a variety of platforms, including drones. Facebook purchased Britain’s Ascenta drone company as part of what it calls its Connectivity Lab project, while Google earlier this year purchased Titan Aerospace.

Near-space platforms at 12 miles (20K meters/65K feet) are 20 times closer than a typical 400-kilometer LEO satellite at 250 miles. High altitude UAVs can stare — 24/7 — without blinking or human needs. Mercury’s sigint computers are powered by nVidia GPUs and Intel processors for TeraFLOPS processing.

IEEE Spectrum has Five Ways to Bring Broadband to the Backwoods, including solar-powered drones, MEO and LEO satellites, balloons, blimps, and White Spaces.

Perhaps not co-incidentally, Google’s rumored fleet of LEO Comsats would weigh about the same as their new Skybox imaging satellites, or about 250 pounds (113 Kilograms).

Supposedly, the LEO comsats would operate in circular orbits of 800 and 950 kilometers inclined 88.2 degrees relative to the equator. Google may try for a regulatory deadlines of between late 2019 and mid-2020 to enter service by the ITU, using the Ku band (12/14 GHz).

In other news, the third MUOS secure military communications satellite has been delivered to Florida by Lockheed Martin and the U.S. Navy for launch next year. MUOS, or Mobile User Objective System, spacecraft, is a geosynchronous platform that can send and receive secure voice and data communications directly to handsets.

MUOS-1 and MUOS-2 were launched respectively launched in 2012 and 2013. The MUOS Constellation will consist of Four Satellites in Geosynchronous Orbit with one on-orbit spare. A total of 16 communication beams can be provided by each satellite. MUOS will replace the legacy UHF Follow-On and operates primarily in the 300 MHz band which penetrates foliage well.

MUOS utilizes 3G (WCDMA) cell phone technology which was a pretty big deal back in 2002. Data rates of up to 384kbps will be available for mobile users. Today’s drones, however, now depend on commercial broadband satellites for most of their kill missions.

Related DailyWireless Space and Satellite News includes; Google Buys Skybox Imaging for $500 Million, Fleet of LEO Comsats for Google?, Satellite Swarms Revolutionize Earth Imaging, Google Buying Drone Company Titan, Facebook Announces Connectivity Lab, Amazon & Globalstar Test Wireless Service, GlobalStar Promotes “Licensed” WiFi in 2.4 GHz band, OuterNet: CubeSat Datacasting?, Planet Labs’ Photo CubeSats Released,SpaceX: Geosynchronous Launch, Antarctic Expeditions Go Live, ExactEarth Launches 5th AIS Satellite, ViaSat-1 Launched

Mimosa Networks: Outdoor Multi-User MIMO

Mimosa Networks, a pioneer in gigabit wireless technology, has announced a new suite of outdoor 802.11ac 4×4 access points and client devices, to create “the world’s highest capacity low-cost outdoor solution and the first with MU-MIMO”. It’s targeting Wireless ISPs and enterprises, but their products won’t be available until Summer/Fall 2015.

Currently most 802.11ac access points use Single User MIMO where every transmission is sent to a single destination only. Other users have to wait their turn. Multi-User MIMO lets multiple clients use a single channel. MU-MIMO applies an extended version of space-division multiple access (SDMA) to allow multiple transmitters to send separate signals and multiple receivers to receive separate signals simultaneously in the same band.

With advanced RF isolation and satellite timing services (GPS and GLONASS), Mimosa collocates multiple radios using the same channel on a single tower while the entire network synchronizes to avoid self-interference.

Additionally, rather than relying on a traditional controller, the access platform takes advantage of Mimosa Cloud Services to seamlessly manage subscriber capacities and network-wide spectrum and interference mitigation.

“The next great advancement in the wireless industry will come from progress in spectrum re-use technology. To that extent, MU-MIMO is a powerful technology that enables simultaneous downlink transmission to multiple clients, fixed or mobile, drastically increasing network speed and capacity as well as spectrum efficiency,” said Jaime Fink, CPO of Mimosa. “Our products deliver immense capacity in an incredibly low power and lightweight package. This, coupled with MU-MIMO and innovative collocation techniques, allows our products to thrive in any environment or deployment scenario and in areas with extreme spectrum congestion.”

The A5 access points are available in 3 different options: A5-90 (90º Sector), High Gain A5-360 (360º Omni with 18 dBi gain) and Low Gain A5-360 (360º Omni with 14 dBi gain). The C5 Client device is small dish, available in 20 dBi gain. The B5c Backhaul leverages 802.11ac, 4×4:4 MIMO and is said to be capable of 1 Gbps throughput.

All four of the products will debut in wireless ISP networks in Summer/Fall 2015 and are currently available for pre-order on the Mimosa website. List Prices are: $1099 for A5-90, $999 for A5 360 18 dBi, $949 for A5 360 14 dBi, $99 for C5.

Mimosa Networks says the new FCC 5 GHz Rules Will Limit Broadband Delivery. New rules prohibit the use of the entire band for transmission, and instead require radios to avoid the edges of the band, severely limiting the amount of spectrum available for use (the FCC is trying to avoid interference with the 5.9 GHz band planned for transporation infrastructure and automobiles).

In addition, concerns about interference of Terminal Doppler Weather Radar (at 5600-5650 MHz) prompted the FCC to disallow the TDWR band. Attempting to balance the needs of all constituencies (pdf), the new FCC regulation adds 100 MHz of new outdoor spectrum (5150-5250 MHz), allowing 53 dBm EIRP for point-to-point links. At the same time, however, it disqualifies Part 15.247 and imposes the stringent emissions requirement of 15.407 ostensibly in order to avoid interference with radar.

Mimosa – along with WISPA and a number of other wireless equipment vendors – believes that the FCC’s current limits will hurt the usefulness of high gain point-to-point antennas. Mimosa wants FCC to open 10.0-10.5 GHz band for backhaul.

Multi-User MIMO promises to handle large crowds better then Wave 1 802.11ac products since the different users can use different streams at the same time. Public Hotspots serving large crowds will benefit with MU-MIMO but enterprise and carrier-grade gear could be a year away, say industry observers.

The FCC has increased Wi-Fi power in the lower 5 GHz band at 5.15-5.25 GHz, making Comcast and mobile phone operators happy since they can make use of 802.11ac networks, both indoors and out, even utilizing all four channels for up to 1 Gbps wireless networking.

The FCC’s 5 GHz U-NII Report & Order allowed higher power in the 5.150 – 5.250 GHz band.

These FCC U-NII technical modifications are separate from another proposal currently under study by the FCC and NTIA that would add another 195 MHz of spectrum under U-NII rules in two new bands, U-NII 2B (5.350 – 5.470 GHz) and U-NII 4 (5.850 – 5.925 GHz).

Commercial entities, including cable operators, cellular operators, and independent companies seem destined to blanket every dense urban area in the country with high-power 5 GHz service – “free” if you’re already a subscriber on their subscription network
.

WifiForward released a new economic study (pdf) that finds unlicensed spectrum generated $222 billion in value to the U.S. economy in 2013 and contributed $6.7 billion to U.S. GDP. The new study provides three general conclusions about the impact of unlicensed spectrum, detailing the ways in which it makes wireline broadband and cellular networks more effective, serves as a platform for innovative services and new technologies, and expands consumer choice.

Additional Dailywireless spectrum news include; Comcast Buys Cloud Control WiFi Company, Gowex Declares Bankruptcy, Ruckus Announces Cloud-Based WiFi Services, Cloud4Wi: Cloud-Managed, Geo-enabled Hotspots, Ad-Sponsored WiFi Initiatives from Gowex & Facebook,
FCC Moves to Add 195 MHz to Unlicensed 5 GHz band, Samsung: Here Comes 60 GHz, 802.11ad, Cellular on Unlicensed Bands, FCC Opens 3.5 GHz for Shared Access, FCC Commissioner: Higher Power in Lower 5 GHz, FCC Authorizes High Power at 5.15 – 5.25 GHz

Opensource Dronecode Project Announced

The Dronecode Project, administered by the nonprofit Linux Foundation, aims to establish common technology for use across the industry. The concept behind Dronecode is to create an open hardware and software stack, where companies can plug in modules for enhanced performance whether it be sensors, piloting, mission planning or other functions. The Android ecosystem is their model.

YouTube Preview Image

Chris Anderson, who started DIY Drones and later 3D Robotics, is behind Dronecode. It utilizes open source hardware and software and includes the APM/ArduPilot UAV software platform and associated code. Examples of Dronecode projects include APM/ArduPilot, Mission Planner, MAVLink and DroidPlanner.

Founding members include 3D Robotics, Baidu, Box, DroneDeploy, Intel, jDrones, Laser Navigation, Qualcomm, Skyward.io, Squadrone System and others.

PX4 ​is an independent, open-source, open-hardware project aiming at providing a high-end autopilot. The PX4 from 3D Robotics, for example, features advanced processor and sensor technology for controlling any autonomous vehicle.

ArduPilot (also ArduPilotMega – APM), was created in 2007 by the DIY Drones community, based on the Arduino open-source electronics prototyping platform.

H.265 encoding, available on Qualcomm’s 810 smartphone processor can reduce HD bandwidth by 50%. Portland’s Elemental Technologies can do the number crunching in the cloud, bring real-time video to all manner of displays.

OpenVX provides mobile developers with an industry standard API to deliver embedded computer vision and computational imaging chipsets that can keep UAVs on track.

YouTube Preview Image

“Open source software and collaborative development are advancing technologies in the hottest, most cutting-edge areas. The Dronecode Project is a perfect example of this,” said Jim Zemlin, executive director at The Linux Foundation.

“By becoming a Linux Foundation Collaborative Project, the Dronecode community will receive the support required of a massive project right at its moment of breakthrough. The result will be even greater innovation and a common platform for drone and robotics open source projects.”

See: Columbia River Drones

GM & Ford to Build Self-Driving Cars for Michigan Testbed

General Motors announced Sunday it plans to introduce Cadillac models in two years that incorporate hands-free driving and Wi-Fi-enabled vehicle-to-vehicle communications with similarly equipped vehicles, reports C/Net. GM brands, Chief Executive Mary Barra announced the initiative in a speech at the Intelligent Transport Systems World Congress in Detroit on Sunday.

In May, Google unveiled a two-seater prototype vehicle that uses built-in sensors and a software system to safely maneuver the vehicle rather than a steering wheel and accelerator and brake pedals.

Google has been leading the charge in developing self-driving technology over the past couple of years, but several automobile manufacturers have also gotten into various aspects of the autonomous driving game, including Audi, Mercedes Benz, Ford, Nissan, Delphi, Toyota, and Tesla.

GM’s “Super Cruise” semi-automated technology will automatically keep a vehicle in a specific, properly equipped freeway lane, making necessary steering and speed adjustments in bumper-to-bumper traffic or long highway trips. The feature, which was unveiled in 2012, is expected to debut in a high-end Cadillac in 2016 on a 2017 model, and will eventually trickle down to other GM brands. It would likely use the 5.9 GHz band for Dedicated Short-Range Communication (DSRC).

The Vehicle to Infrastructure (V2I) system would act as a natural complement to the active traffic management projects that are up and running in European countries like England, Germany, Greece and The Netherlands, according to Barra.

For example, the M4 and M5 Smart Motorways near Bristol, England now include things like variable speed limits, dynamic routing and lane markings, and improved traveler information systems.

GM is joining the University of Michigan and the state of Michigan to develop vehicle-to-infrastructure driving corridors on 120 miles of metro Detroit roadways. State officials said Ford is also part of the effort. If a driver in a V2V-equipped car brakes suddenly in heavy fog, for example, every other V2V-enabled car around it will know, MDOT notes.

When the new corridor goes on line, 9,000 V2V-equipped cars are expected to be on the road as part of the program.

The University of Michigan’s Mobility Transformation Center (MTC), a major public-private R&D initiative that aims to revolutionize the movement of people and goods in society the university announced Friday. Plans call for implementing a working system in Ann Arbor by 2021.

Here’s My Proposal for self-driving cars in Portland. See Dailywireless stories on Vehicle-to-Vehicle Network Proposed for United States, Vehicle to Vehicle Communications: Moving Forward?, FCC Moves to Add 195 MHz to Unlicensed 5 GHz band, World Congress on Talking Cars, and 5.9 GHz Hits the Road, Inside Google’s Driverless Car, Driverless Cars Rolling Out in UK, Autonet Does Control and Diagnostic Apps, Verizon Forms Connected Car Venture, Automotive Telematics Goes 4G, Ford Lowers SYNC Costs, Google’s Driverless Car Explained, World Congress on Talking Cars, Connected Car Conference

Vehicle-to-Vehicle Network Proposed for United States

The National Highway Traffic Safety Administration (NHTSA) is seeking input about a possible federal standard for vehicle-to-vehicle (V2V) communications, which would let cars automatically exchange information, such as whether they’re close to each other.

On Monday, the NHTSA published a research report and issued an advance notice of proposed rulemaking (ANPRM) in hopes of collecting a lot of feedback before issuing a full NPRM in 2016.

Transportation Secretary Anthony Foxx said the technology holds the potential to significantly reduce crashes, injuries and deaths on the nation’s streets and highways.

Vehicle-to-vehicle (V2V) communications utilizes a wireless network where automobiles send messages to each other. Traffic signals or other stationary devices are called V2I, or vehicle to infrastructure.

A transponder would continually transmit the vehicle’s position, heading, speed and other information 10 times per second in all directions. It has a range around 1000 feet or about 10 seconds at highway speeds.

Vehicle-to-vehicle communications uses dedicated short-range communications (DSRC), using the 5.9GHz band, which is close to the new, higher power 5 GHz WiFi band authorized by the FCC. Proposed FCC rules would increase power for the U-NII-3 band–5.725-5.850 MHz, but it is drawing heavy criticism from highway advocates and wireless ISPs. The highway administration is concerned about possible DSRC interference from more powerful outdoor WiFi in the adjacent 5 GHz band.

The Association of Global Automakers has expressed concerns about more power in the adjacent 5 GHz WiFi band.

The TIA believes that the FCC acted correctly to promote use of the 5 GHz band by unlicensed devices, including allowing operations up to 5850 MHz which is adjacent to the automakers’ DSRC / U-NII-4 spectrum (5850-5925 MHz)

V2V would be a mesh network, meaning every node (car, smart traffic signal, etc.) could send, capture and retransmit signals. Five to 10 hops on the network would gather traffic conditions a mile ahead. That’s enough time for even the most distracted driver to take his foot off the gas. On the first cars, V2V warnings might come to the driver as an alert, perhaps a red light that flashes in the instrument panel, or an amber then red alert for escalating problems.

The intelligent highway communications network (using the 5.9 GHz band) is not directly connected to a car’s infotainment system which uses Bluetooth, WiFi and 4G commercial networks for passenger entertainment.

Five years ago infotainment ranked 27th on a list of features most cars shopper wanted. Now it’s in the top five.

According to research firm Analysys Mason, 11.5 million connected cars will ship this year, growing to around 170 million in 2023. General Motors’ OnStar service currently has 6 million customers. Worldwide sales of HUD-equipped cars will increase from 1.2 million units in 2012 to 9.1 million in 2020.

Here’s My Proposal for self-driving cars in Portland. See Dailywireless stories on Vehicle to Vehicle Communications: Moving Forward?, FCC Moves to Add 195 MHz to Unlicensed 5 GHz band, World Congress on Talking Cars, and 5.9 GHz Hits the Road, Inside Google’s Driverless Car, Driverless Cars Rolling Out in UK, Autonet Does Control and Diagnostic Apps, Verizon Forms Connected Car Venture, Automotive Telematics Goes 4G, Ford Lowers SYNC Costs, Google’s Driverless Car Explained, World Congress on Talking Cars, Connected Car Conference